Molecular dynamics simulations indicate an induced-fit mechanism for LSD1/CoREST-H3-histone molecular recognition
نویسندگان
چکیده
BACKGROUND Lysine Specific Demethylase (LSD1 or KDM1A) in complex with its co-repressor protein CoREST catalyzes the demethylation of the H3 histone N-terminal tail and is currently one of the most promising epigenetic targets for drug discovery against cancer and neurodegenerative diseases. Models of non-covalent binding, such as lock and key, induced-fit, and conformational selection could help explaining the molecular mechanism of LSD1/CoREST-H3-histone association, thus guiding drug discovery and design efforts. Here, we quantify the extent to which LSD1/CoREST substrate binding is consistent with these hypothetical models using LSD1/CoREST conformational ensembles obtained through extensive explicit solvent molecular dynamics (MD) simulations. RESULTS We find that an induced-fit model is the most representative of LSD1/CoREST-H3-histone non-covalent binding and accounts for the local conformational changes occurring in the H3-histone binding site. We also show that conformational selection - despite in principle not ruled out by this finding - is minimal, and only relevant when global properties are considered, e.g. the nanoscale motion of the LSD1/CoREST clamp. CONCLUSION The induced-fit mechanism revealed by our MD simulation study will aid the inclusion of protein dynamics for the discovery and design of LSD1 inhibitors targeting the H3-histone binding region. On a general basis, our study indicates the importance of using multiple metrics or selection schemes when testing alternative hypothetical mechanistic models of non-covalent binding.
منابع مشابه
LSD1/CoREST is an allosteric nanoscale clamp regulated by H3-histone-tail molecular recognition.
The complex of lysine-specific demethylase-1 (LSD1/KDM1A) with its corepressor protein CoREST is an exceptionally relevant target for epigenetic drugs. Here, we provide insight into the local and global changes of LSD1/CoREST conformational dynamics that occur upon H3 binding on the basis of a total cumulative time of one microsecond molecular dynamics simulation. The LSD1/CoREST complex functi...
متن کاملExtranucleosomal DNA enhances the activity of the LSD1/CoREST histone demethylase complex
The promoter regions of active genes in the eukaryotic genome typically contain nucleosomes post-translationally modified with a trimethyl mark on histone H3 lysine 4 (H3K4), while transcriptional enhancers are marked with monomethylated H3K4. The flavin-dependent monoamine oxidase LSD1 (lysine-specific demethylase 1, also known as KDM1) demethylates mono- and dimethylated H3K4 in peptide subst...
متن کاملStructural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase.
Histone methylation regulates diverse chromatin-templated processes, including transcription. Many transcriptional corepressor complexes contain lysine-specific demethylase 1 (LSD1) and CoREST that collaborate to demethylate mono- and dimethylated H3-K4 of nucleosomes. Here, we report the crystal structure of the LSD1-CoREST complex. LSD1-CoREST forms an elongated structure with a long stalk co...
متن کاملCatalytic Mechanism Investigation of Lysine-Specific Demethylase 1 (LSD1): A Computational Study
Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is a flavin-dependent amine oxidase which specifically demethylates mono- or dimethylated H3K4 and H3K9 via a redox process. It participates in a broad spectrum of biological processes and is of high importance in cell proliferation, adipogenesis, spermatogenesis, chromosome segregation and embryonic development. To...
متن کاملStructural basis of LSD1-CoREST selectivity in histone H3 recognition.
Histone demethylase LSD1 regulates transcription by demethylating Lys(4) of histone H3. The crystal structure of the enzyme in complex with CoREST and a substrate-like peptide inhibitor highlights an intricate network of interactions and a folded conformation of the bound peptide. The core of the peptide structure is formed by Arg(2), Gln(5), and Ser(10), which are engaged in specific intramole...
متن کامل